元素 | Al | Cr | Fe | Co | Mo | Hf | Ta | W | Re | Ni |
---|---|---|---|---|---|---|---|---|---|---|
質(zhì)量分?jǐn)?shù)/% | 6.38 | 7.11 | 0.05 | 7.42 | 1.44 | 0.14 | 6.34 | 4.13 | 2.31 | 余 |
分享:航空發(fā)動(dòng)機(jī)用鎳基單晶高溫合金渦輪葉片服役后的顯微組織損傷
0. 引言
渦輪葉片是航空發(fā)動(dòng)機(jī)的關(guān)鍵組成部分,由于長(zhǎng)期服役于高溫、高壓等惡劣工況[1],其材料的組織會(huì)不可避免地發(fā)生損傷和退化,從而影響發(fā)動(dòng)機(jī)的性能和運(yùn)行安全。研究渦輪葉片在服役后的顯微組織損傷,對(duì)于理解和評(píng)估其工作狀態(tài)、預(yù)測(cè)使用壽命以及優(yōu)化材料設(shè)計(jì)和制造工藝具有重要意義。
近年來(lái),國(guó)內(nèi)外關(guān)于航空發(fā)動(dòng)機(jī)渦輪葉片服役后的組織損傷已有大量研究[2-5]。馮強(qiáng)等[3]概述了渦輪葉片的主要組織損傷類型,探討了這些損傷與性能下降之間的關(guān)系,提出了定量化研究?jī)烧哧P(guān)系的框架。MAZUR等[4]研究發(fā)現(xiàn),溫度與載荷的共同作用會(huì)導(dǎo)致燃?xì)廨啓C(jī)I級(jí)渦輪葉片組織中的γ´相粗化,并伴隨筏狀結(jié)構(gòu)的形成和團(tuán)聚。JAHANGIRI等[5]研究發(fā)現(xiàn),長(zhǎng)期服役后析出相的變化是導(dǎo)致渦輪葉片力學(xué)性能降低的關(guān)鍵因素。然而,目前通過(guò)顯微組織損傷情況來(lái)評(píng)估葉片損傷分布的研究仍較少。
鎳基單晶高溫合金具有優(yōu)異的耐高溫腐蝕性能和抗蠕變性能,能夠在極端高溫和高應(yīng)力的環(huán)境下保持結(jié)構(gòu)的穩(wěn)定性,且具有較長(zhǎng)的服役壽命[6],是制造渦輪葉片的優(yōu)選材料。鎳基單晶高溫合金的顯微組織通常由基體相(γ相)和強(qiáng)化相(γ´相)組成[7],體積分?jǐn)?shù)在60%~75%的γ´相能夠有效發(fā)揮強(qiáng)化作用[8]。但是,γ´相的粗化和筏化是鎳基單晶高溫合金渦輪葉片服役時(shí)的主要損傷模式[9],因此針對(duì)γ´相的退化進(jìn)行定量評(píng)估以表征葉片的損傷程度[10],對(duì)確保渦輪葉片的安全運(yùn)行具有重要意義。
作者以服役后的鎳基單晶高溫合金渦輪葉片為研究對(duì)象,采用定量顯微組織分析方法,精確測(cè)算了葉片的γ´相面積分?jǐn)?shù)和γ相通道寬度等,分析了葉片不同高度不同位置的顯微組織損傷,并結(jié)合硬度測(cè)定,探討了顯微組織與材料性能之間的關(guān)系。這種定量化分析彌補(bǔ)了傳統(tǒng)顯微技術(shù)的不足,更全面地揭示了渦輪葉片在極端工況下的微觀結(jié)構(gòu)損傷,可為優(yōu)化渦輪葉片設(shè)計(jì)和選材、提高發(fā)動(dòng)機(jī)運(yùn)行效率和壽命提供參考。
1. 試樣制備與試驗(yàn)方法
試樣取自服役一定時(shí)間后的某型號(hào)波音飛機(jī)發(fā)動(dòng)機(jī)高壓渦輪葉片,葉片材料為第二代鎳基單晶高溫合金。采用XRF-1800型X射線熒光分析儀對(duì)合金的化學(xué)成分進(jìn)行測(cè)定,結(jié)果見表1。
在渦輪葉片的榫頭、葉根、49%葉高、60%葉高和85%葉高處取橫截面試樣,以分析葉片在不同應(yīng)力和溫度條件下的性能,取樣高度及不同高度處葉片取樣位置如圖1所示。葉片葉根部位承受較大的離心載荷和振動(dòng),是研究葉片固定方式及其耐久性的重要部位;葉身中部(49%和60%葉高)為葉片承受載荷的主要區(qū)域,位于葉片的工作負(fù)荷中心,承受著較高的應(yīng)力以及較為穩(wěn)定的氣流速度;85%葉高部位的氣流速度相比葉身中部更快,而由于冷卻系統(tǒng)設(shè)計(jì),溫度并未達(dá)到極端高溫水平,應(yīng)力和溫度相對(duì)處于較低水平,變化相對(duì)平穩(wěn),工作環(huán)境較為復(fù)雜;榫頭部位對(duì)葉片安全性和性能至關(guān)重要。
對(duì)試樣進(jìn)行打磨和拋光處理,隨后用腐蝕液(由33 mL HNO3+33 mL CH3COOH+1 mL HF+33 mL H2O組成)腐蝕5~10 s,采用MEF-3型光學(xué)顯微鏡(OM)和SUPRA 55型掃描電子顯微鏡(SEM)進(jìn)行顯微組織觀察。在SEM圖像上選擇渦輪葉片不同區(qū)域的視圖,利用Image-J軟件和Origin軟件對(duì)渦輪葉片的顯微組織進(jìn)行定量分析,統(tǒng)計(jì)γ´相面積分?jǐn)?shù)以及γ相通道寬度,相同位置至少選取3張視圖。采用FM800型維氏硬度計(jì)測(cè)試橫截面顯微硬度,載荷為4.9 N,保載時(shí)間為15 s,測(cè)5個(gè)點(diǎn)取平均值。
2. 試驗(yàn)結(jié)果與討論
2.1 服役后γ´相變化
由圖2可以看出:服役后的葉片不同高度不同位置均呈現(xiàn)出典型的[001]取向γ´相枝晶結(jié)構(gòu)[3],這些枝晶呈“十”字花紋狀的排列模式,γ´相作為強(qiáng)化相存在于基體相γ相中形成了強(qiáng)化結(jié)構(gòu);不同葉高位置的前緣、葉背、葉盆和尾緣區(qū)域的枝晶數(shù)量和形態(tài)基本保持一致,未觀察到顯著差異。

由圖3可以看出,服役后的葉片榫頭處γ´相呈現(xiàn)出規(guī)則的立方形態(tài),邊長(zhǎng)約為0.5 μm,均勻彌散地分布在基體γ相中。統(tǒng)計(jì)得到葉片榫頭處的γ´相面積分?jǐn)?shù)約為72%,γ相通道寬度為0.155 μm。結(jié)合文獻(xiàn)[11]分析可知,榫頭部位的服役溫度和應(yīng)力相對(duì)較低,γ´相的形貌和尺寸變化較為有限。因此,榫頭部位的顯微組織特征可作為評(píng)估葉片其他位置組織損傷的基準(zhǔn)。
由圖4可以看出:與榫頭部位相比,服役后葉片葉根前緣區(qū)域的部分γ´相出現(xiàn)了連接和聚合現(xiàn)象,導(dǎo)致單個(gè)γ´相的面積相較于葉片榫頭部位有所增大,且部分γ相發(fā)生斷裂;葉背和葉盆區(qū)域的γ´相保持較為規(guī)整的結(jié)構(gòu),與榫頭部位相似;尾緣區(qū)域的γ´相表現(xiàn)出明顯的邊角鈍化現(xiàn)象,大多數(shù)γ´相的形狀由立方形轉(zhuǎn)變?yōu)殚L(zhǎng)方體或球形,γ相通道發(fā)生斷裂并細(xì)化,通道寬度約為0.09 μm,顯著小于前緣、葉背和葉盆區(qū)域以及榫頭部位。
在相同的服役時(shí)間下,服役溫度對(duì)材料微觀結(jié)構(gòu)的損傷影響顯著。在相同高度處葉片的前緣和尾緣區(qū)域承受相對(duì)較高的服役溫度,因此γ´相的粗化現(xiàn)象更加嚴(yán)重,微觀結(jié)構(gòu)的損傷程度也較大,但總體而言組織差異不是很大。此外,雖然葉根與榫頭部位的服役溫度均相對(duì)較低,但葉根部位可能會(huì)受到超速運(yùn)行等工況條件的影響[12],會(huì)承受比榫頭部位更高的應(yīng)力,使得γ´相和γ相與榫頭部位相比發(fā)生較為顯著的變化,尤其在前緣區(qū)域,γ´相出現(xiàn)明顯的粗化與聚合現(xiàn)象。
由圖5可以看出,49%葉高處葉片不同位置的γ´相表現(xiàn)出明顯的差異。葉盆區(qū)域的γ´相保持了較為規(guī)則的立方結(jié)構(gòu),與榫頭部位相比γ´相未發(fā)生過(guò)度粗化,未觀察到明顯的退化現(xiàn)象,說(shuō)明該區(qū)域的γ´相組織較為穩(wěn)定;葉背區(qū)域的γ´相粒子出現(xiàn)了邊角鈍化現(xiàn)象,并且部分粒子之間發(fā)生了連接,γ相通道寬度明顯變小,小于葉盆、前緣和尾緣等3個(gè)區(qū)域;前緣區(qū)域的γ´相相比于葉背區(qū)域發(fā)生了粗化,且相鄰粒子之間的通道大量消失,粒子之間出現(xiàn)了更廣泛的連接和聚合,導(dǎo)致γ´相的尺寸進(jìn)一步增大;尾緣區(qū)域的組織退化程度最為嚴(yán)重,γ´相發(fā)生了聚集和連接,大部分γ相基體發(fā)生斷裂。
在服役過(guò)程中,尾緣區(qū)域的γ´相退化最為顯著,這可能是因?yàn)橄噍^于葉盆、葉背和前緣3個(gè)區(qū)域,該區(qū)域經(jīng)歷了更極端的溫度和應(yīng)力作用,導(dǎo)致了最嚴(yán)重的組織損傷;前緣區(qū)域的損傷程度次之,而葉背和葉盆區(qū)域則表現(xiàn)出相對(duì)較好的組織穩(wěn)定性,這可能是因?yàn)檫@2個(gè)區(qū)域所承受的溫度和應(yīng)力條件較為均勻或較低。
由圖6可見,服役后葉片60%葉高處的葉背和葉盆區(qū)域的γ´相組織與49%葉高處的葉盆區(qū)域相似,大多數(shù)γ´相保持了較為規(guī)則的立方形結(jié)構(gòu),γ´相未過(guò)度粗化,γ相通道出現(xiàn)了斷裂現(xiàn)象。在60%葉高處的葉背和葉盆區(qū)域,γ´相組織變化較小,退化現(xiàn)象不顯著。在60%葉高處,與葉背和葉盆區(qū)域相比,前緣和尾緣區(qū)域的γ´相表現(xiàn)出更為顯著的退化現(xiàn)象,不再呈現(xiàn)規(guī)則的立方形結(jié)構(gòu),而是表現(xiàn)出邊角鈍化的特征,呈現(xiàn)出長(zhǎng)條狀、L型等不規(guī)則形態(tài)[13],并且γ´相顆粒趨向于連接和聚合。隨著γ´相顆粒的聚合和連接,γ´相數(shù)量減少,而獨(dú)立顆粒的數(shù)量有所增加。值得注意的是,在γ´相顆粒相連區(qū)域,基體γ相通道逐漸細(xì)化,最終消失;而在γ´相顆粒未相連區(qū)域,基體γ相通道則較寬,這一現(xiàn)象與高溫服役過(guò)程中γ´相的回溶行為相吻合。在高溫作用下,γ´相的回溶會(huì)導(dǎo)致γ´相顆粒的溶解與再結(jié)晶,從而促使顆粒形態(tài)發(fā)生改變,并進(jìn)一步影響基體γ相通道的寬度;同時(shí),由于高溫下γ´相的溶解度增加,部分γ´相粒子溶解,并在冷卻過(guò)程中重新析出,使得獨(dú)立顆粒數(shù)量增加,顆粒形態(tài)也變得更加不規(guī)則[14]。
與49%葉高相比,60%葉高處的γ´相退化現(xiàn)象更加明顯,特別是在前緣和尾緣區(qū)域。49%葉高處盡管已有一些γ´相顆粒出現(xiàn)聚合趨勢(shì),但γ´相顆粒的形態(tài)變化較為輕微,回溶現(xiàn)象尚不顯著。
由圖7可以看出:服役后85%葉高處的葉背和葉盆區(qū)域的γ´相仍保持較為規(guī)則的立方結(jié)構(gòu),組織變化較小,而前緣和尾緣區(qū)域的γ´相出現(xiàn)了不同程度的聚集現(xiàn)象,損傷較為嚴(yán)重。總體而言,85%葉高處葉片各區(qū)域的γ´相顆粒數(shù)量較多、分布較均勻,與榫頭部位的損傷差異沒(méi)有49%葉高和60%葉高處與榫頭部位的明顯。在葉根和85%葉高處,γ´相的變化表現(xiàn)出一定的相似性,γ´相顆粒的邊角特征均開始消失,且相鄰的γ´相顆粒呈現(xiàn)出聚合的趨勢(shì),原本連續(xù)的γ相通道出現(xiàn)斷裂,形成明顯的短條狀結(jié)構(gòu)。這些現(xiàn)象說(shuō)明雖然這2個(gè)部位各區(qū)域的損傷程度較輕,但其微觀結(jié)構(gòu)依然發(fā)生了明顯退化。
綜上所述,渦輪葉片不同高度不同區(qū)域的損傷程度存在顯著差異。在相同葉片高度處,前緣和尾緣區(qū)域的組織損傷較葉背和葉盆區(qū)域更為嚴(yán)重,這種損傷的不均勻性暗示了渦輪葉片在實(shí)際服役過(guò)程中,不同區(qū)域受到的應(yīng)力和溫度分布存在顯著差異。此外,不同葉片高度同一區(qū)域的組織損傷也存在差異,葉身中部(49%和60%葉高)的損傷更為嚴(yán)重,該部位前緣和尾緣區(qū)域的損傷尤甚。葉身中部近排氣邊區(qū)域(前緣和尾緣區(qū)域)通常為服役溫度最高的區(qū)域[15],因此前緣和尾緣區(qū)域的顯微組織退化最為嚴(yán)重;相比之下,葉背和葉盆區(qū)域雖然分別經(jīng)歷了低溫高應(yīng)力和高溫低應(yīng)力工況,但是這兩種工況對(duì)γ´相演化的影響機(jī)制相似,因此γ´相形貌和尺寸保持較高的一致性[16]。
2.2 組織退化的定量表征
由圖8可以看出:60%葉高處葉片各區(qū)域的γ´相面積分?jǐn)?shù)最高,85%葉高處的γ´相面積分?jǐn)?shù)最低,其中85%葉高處的γ´相面積分?jǐn)?shù)明顯低于60%葉高處的葉盆區(qū)域。
85%葉高處的整體溫度低于60%葉高處,并且85%葉高處的葉盆區(qū)域位于較低溫區(qū)域的高溫低應(yīng)力區(qū)域,而60%葉高處的葉盆區(qū)域則處于較高溫度環(huán)境中。當(dāng)溫度低于γ´相完全溶解的溫度時(shí),隨著γ´相的粗化和生長(zhǎng),γ´相開始出現(xiàn)回溶現(xiàn)象;而當(dāng)服役溫度升高,甚至超過(guò)γ´相的溶解溫度時(shí),回溶現(xiàn)象將更加顯著。此外,在快速冷卻過(guò)程中,γ´相中的元素未能充分?jǐn)U散進(jìn)入基體固溶體中,這將導(dǎo)致γ´相面積分?jǐn)?shù)明顯減少[17]。渦輪葉片的使用溫度范圍在900~1 200 °C[18],在不同葉高處產(chǎn)生的溫度差異可能導(dǎo)致γ´相發(fā)生不同程度的溶解與粗化。60%葉高位置處于較高溫度區(qū)域,較高的溫度促進(jìn)了γ´相的回溶,導(dǎo)致其面積分?jǐn)?shù)較高;而85%葉高處溫度相對(duì)較低,雖然沒(méi)有明顯的回溶現(xiàn)象,但由于溫度較低,γ´相的形貌保持較為規(guī)則,退化現(xiàn)象不顯著,尤其在葉盆區(qū)域,粗化效應(yīng)較輕。
由圖9可以看出:葉根處葉片不同區(qū)域的γ相通道寬度均小于榫頭部位(0.155 μm),γ相的粗化程度較輕,這是因?yàn)槿~根部位的服役溫度較低,導(dǎo)致γ相的粗化速率較慢;相比之下,49%與60%葉高處的前緣和尾緣區(qū)域的γ相通道寬度顯著大于榫頭部位,γ相顯著粗化,葉背和葉盆區(qū)域的γ相通道寬度接近于榫頭部位,γ相粗化程度較輕;85%葉高處葉片各區(qū)域的γ相通道寬度與榫頭部位相當(dāng)或略小,γ相粗化程度較輕。這些結(jié)果與γ´相面積分?jǐn)?shù)的結(jié)果一致。
通過(guò)對(duì)γ相和γ´相的對(duì)比分析,發(fā)現(xiàn)當(dāng)γ相通道寬度增大時(shí),通常伴隨γ´相顆粒的粗化和數(shù)量的減少,尤其是在高溫區(qū)域(如49%和60%葉高處的前緣與尾緣),可見γ相的粗化與γ´相的退化有顯著關(guān)聯(lián)。這一現(xiàn)象符合Ostwald熟化法則,即在高溫高壓環(huán)境下,為了減少界面能,較大的γ´相顆粒逐漸增大,而較小的顆粒則逐步溶解[19]。
2.3 服役后葉片顯微硬度
服役后葉片榫頭部位的顯微硬度為299 HV。由圖10可以看出,葉根處以及49%,60%,85%葉高處葉片的平均顯微硬度分別為327,254,295,282 HV。葉根部位的顯微組織相對(duì)穩(wěn)定,γ´相顆粒形態(tài)規(guī)整,且未出現(xiàn)明顯的回溶現(xiàn)象,因此硬度較高;49%和85%葉高處的硬度下降與γ´相的回溶現(xiàn)象有關(guān),γ´相回溶過(guò)程通常伴隨著γ´相顆粒尺寸的增大和數(shù)量的減少,從而導(dǎo)致組織退化和硬度下降[20-22];60%葉高處的前緣和尾緣區(qū)域的γ´相也出現(xiàn)了回溶行為,但硬度下降程度沒(méi)有49%和85%葉高處顯著,這可能與該區(qū)域經(jīng)歷γ´相回溶的時(shí)間較短以及其他局部因素(如應(yīng)力和組織的初始狀態(tài))有關(guān)。盡管γ´相發(fā)生了回溶,但溫度和應(yīng)力條件的差異可能導(dǎo)致γ´相退化的速率不同,從而使得硬度變化的程度也有所不同。由圖10還可以看出:相同葉高處前緣和尾緣的硬度基本比葉盆和葉背低,在49%和60%葉高處,尾緣區(qū)域的硬度明顯低于葉背和葉盆區(qū)域;葉身中部(49%和60%葉高)葉背和葉盆區(qū)域的硬度變化與前緣和尾緣區(qū)域相比較小,這與這2個(gè)區(qū)域的γ´相形貌和尺寸較一致,γ´相顆粒形態(tài)較為規(guī)整,未出現(xiàn)過(guò)度粗化現(xiàn)象有關(guān)。
結(jié)合圖8、圖9、圖10和顯微組織分析可知:85%葉高處葉片各區(qū)域的γ´相顆粒數(shù)量較多、分布較均勻,且基體γ相的粗化程度較輕,硬度相對(duì)較高;葉根部位的γ相通道寬度較小,γ相粗化程度較低,γ´相顆粒形態(tài)規(guī)整,硬度較高;49%和60%葉高處的顯微硬度與組織參數(shù)之間的關(guān)系呈現(xiàn)更為復(fù)雜的分布模式。在49%葉高處,前緣區(qū)域雖然γ´相和γ相均發(fā)生粗化,但硬度最高,而尾緣區(qū)域的γ´相發(fā)生了聚集和連接,γ相顯著粗化,硬度最低。在60%葉高處,前緣區(qū)域的γ´相明顯退化,γ相顯著粗化,硬度最低;葉背區(qū)域的γ´相組織退化不顯著,γ相粗化程度輕,硬度最高。顯微硬度的變化不僅與局部γ´相的形態(tài)和尺寸變化有關(guān),還與局部溫度和應(yīng)力分布密切相關(guān)[23]。總體而言,γ´相的變化對(duì)合金硬度的影響顯著:γ´相的回溶和顆粒粗化過(guò)程會(huì)使硬度下降,而在較低溫度區(qū)域或較低應(yīng)力條件下,γ´相顆粒相對(duì)穩(wěn)定,發(fā)生回溶和粗化的現(xiàn)象較少,硬度較高。
3. 結(jié)論
(1)服役后鎳基單晶高溫合金渦輪葉片相同高度處的前緣和尾緣區(qū)域由于承受更高的溫度和應(yīng)力,其組織損傷程度較葉背和葉盆區(qū)域更顯著;在49%和60%葉高處的組織損傷最為嚴(yán)重,尤其在尾緣區(qū)域,γ´相的退化現(xiàn)象顯著,表現(xiàn)為其面積分?jǐn)?shù)下降、顆粒邊角出現(xiàn)鈍化以及部分γ´相發(fā)生回溶。
(2)服役后渦輪葉片不同高度按平均顯微硬度大小由高到低排序,依次為葉根、榫頭、60%葉高、85%葉高和49%葉高;相同葉高處的前緣和尾緣區(qū)域的硬度基本比葉盆和葉背低,尤其是49%和60%葉高處,尾緣區(qū)域的硬度明顯低于葉背和葉盆區(qū)域。
(3)γ´相的回溶和顆粒粗化會(huì)導(dǎo)致鎳基單晶高溫合金硬度下降,而在較低溫度或較低應(yīng)力條件下,γ´相顆粒相對(duì)穩(wěn)定,回溶和粗化的現(xiàn)象較少,硬度較高。
文章來(lái)源——材料與測(cè)試網(wǎng)